
How to write good, composable 
and pure components in 

ng-poznan #31 @ Poznań,
5th June 2018

Jacek Tomaszewski
Fullstack Web Developer at Recruitee.com

Freelancer and Consultant at jtom.me

https://jobs.recruitee.com
https://jtom.me


Writing new components is easy… 
… but modifying and extending them is not.

(Especially when you have hundreds of them,

 and you want to avoid breaking things.)

Problem



Problem

Whatever framework you’re using (Angular / React / Vue?), 
all the time the same exact questions tend to appear again:

○ Where do I keep the state of X?

○ How do I change the state of X?

○ If the state of X depends on Y, how do I wire up those dependencies?

○ If I can solve a problem P with either solution A, B or C, 

which one should I pick?



(live demo here)

Real world 
example
a search page

Where should we keep 

the state? 

How should we split the 

components?

https://recruitee.com/admin/#/candidates


Solution

1. Divide components into Smart and Dumb

2. Keep components as Dumb as possible

3. Decide when a component should be Smart instead of Dumb



Dumb Component

Also known as:

● Pure Component

● Presentational Component

Smart Component

Also known as:

● Impure Component

● Connected Component

● Container Component

1. Divide components into Smart and Dumb



● is like a pure function: a function that for given function arguments, will always produce the same 

return value;

● for given data (via inputs) always looks and behaves the same;

● emits events (via outputs).

Dumb Component



● is like an impure function: a function that touches "the outer world": either by getting data from 

external services or by producing side effects;

● receives data from external services;

● produces side effects in external services.

Smart Component



A Dumb Component has no external 

dependencies and causes no side effects.

A Smart Component has external 

dependencies or causes side effects.

Note: Smart/Dumb is not Stateful/Stateless!

A Stateless Component has no local state

- but might still cause side effects.

A Stateful Component has a local state 

- but he doesn’t need to have any 

dependencies nor cause any side effects.



Smart/Dumb x Stateful/Stateless matrix



2. Keep components as Dumb as possible

a. Avoid making them dependant on external services 

b. Avoid producing any kind of side effects 

c. Never mutate @Input() data



Avoid making them 
dependant on 
external services 
If it needs any data to work, inject it via 
@Input().

// wrong (impure)

class DateTimePickerComponent {

 timeZone: string = 'Europe/Warsaw';

 constructor(

  private account: UserAccount

 ) {

  if (this.account.currentUser) {

   this.timeZone = 

this.account.currentUser.timeZone;

  }

 }

}



Avoid making them 
dependant on 
external services 
If it needs any data to work, inject it via 
@Input().

// good (pure)

class DateTimePickerComponent {

 @Input() timeZone: string = 

'Europe/Warsaw';

}



Avoid making them 
dependant on 
external services 

// ok (pure and impure mix)

class DateTimePickerComponent {

 @Input() timeZone: string = 

'Europe/Warsaw';

 constructor(

  @Optional() private account: 

UserAccount

 ) {

  if (this.account && 

this.account.currentUser) {

   this.timeZone = 

this.account.currentUser.timeZone;

  }

 }

}

If it needs any data to work, inject it via 
@Input().



Avoid making them 
dependant on 
external services 
If it needs any data to work, inject it via 
@Input().

// wrong (impure)

class MessageItemComponent {

 @Input() message: MessageData;

 messageUnread: boolean = false;

 constructor(

  private messages: MessagesRepo,

  private cdRef: ChangeDetectorRef

 ) {}

 ngOnInit() {

  this.messages

   .isMessageUnread(this.message.id)

   .subscribe(unread => {

    this.messageUnread = unread;

    if (!this.cdRef['destroyed']) {

     this.cdRef.detectChanges();

    }

   });

 }

}



Avoid making them 
dependant on 
external services 
If it needs any data to work, inject it via 
@Input().

// good (pure)

class MessageItemComponent {

 @Input() message: MessageData;

 @Input() messageUnread: boolean = 

false;

}



Avoid producing 
any kind of side 
effects 
If it needs to emit something, emit it 
through @Output().

// wrong (impure)

class DateTimePickerComponent {

 timeZone: string = 'Europe/Warsaw';

 changeTimeZone(timeZone: string) {

  this.timeZone = timeZone;

  this.accountRepo.updateCurrentUser({

   timeZone

  });

 }

}



Avoid producing 
any kind of side 
effects 

// good (pure)

class DateTimePickerComponent {

 @Input() timeZone: string = 

'Europe/Warsaw';

 @Output() timeZoneChange: 

EventEmitter<string> = new 

EventEmitter();

 changeTimeZone(timeZone: string) {

  this.timeZoneChange.emit(timeZone);

 }

}

If it needs to emit something, emit it 
through @Output().



Avoid producing 
any kind of side 
effects 

// wrong (impure)

class MessageItemComponent {

 @Input() message: MessageData;

 messageUnread: boolean = false;

 markMessageAsRead(read: boolean) {

  this.messageUnread = !read;

  this.messagesRepo.markMessageAsRead({

   id: message.id,

   read: read

  });

 }

}

If it needs to emit something, emit it 
through @Output().



Avoid producing 
any kind of side 
effects 

// good (pure)

class MessageItemComponent {

 @Input() message: MessageData;

 @Input() messageUnread: boolean = 

false;

 @Output() messageMarkedAsRead: 

EventEmitter<boolean> = new 

EventEmitter();

 markMessageAsRead(read: boolean) {

  this.messageMarkedAsRead.emit(read);

 }

}

If it needs to emit something, emit it 
through @Output().



Never mutate 
@Input() data

If it needs to change something, emit the 
change as an event, which the parent 
will then pick up and properly act on it.

(Because mutating @Input() data is 
actually a production of a side effect 
that causes a change in the parent 
component's data.)

class MessageItemComponent {

 @Input() message: MessageData;

 get messageUnread(): boolean {

  return this.message._isUnread;

 }

 markMessageAsRead(read: boolean) {

  // suuper wrong

  // - never do it please!

  this.message._isUnread = !read;

  this.messagesRepo.markMessageAsRead({

   id: message.id,

   read: read

  });

 }

}



a. If it can be Dumb, make it Dumb.
b. If multiple children are equally Smart, make them Dumb. 
c. What cannot be Dumb, make it Smart.
d. If the Smart one gets too big, divide it into separate Smarts.

3. Decide when a component should be Smart



@Component(...)

class TextInputComponent {

 @Input() value: string;

 @Output() valueChange: EventEmitter<string>;

}

If it can be Dumb, 
make it Dumb

TextInputComponent:
receives a text value and 
eventually emits a valueChange 
event



DateRangeFilterComponent:
receives a date range filter value 
and eventually emits a value 
change event

@Component(...)

class DateRangeFilterComponent {

 @Input() value: DateRangeFilterValue;

 @Output() valueChange: 

EventEmitter<DateRangeFilterValue>;

}

If it can be Dumb, 
make it Dumb



Note: If it needs to inject and use an 
external JS library to show a date picker - it 
is not a problem!

If the Dumb component’s behaviour is 
consistent according to its’ Inputs, and it 
doesn’t cause side effects that might alter 
our main app’s behaviour, then it’s a fine 
Dumb component as well.

DateRangeFilterComponent:
receives a date range filter value 
and eventually emits a value 
change event

@Component(...)

class DateRangeFilterComponent {

 @Input() value: DateRangeFilterValue;

 @Output() valueChange: 

EventEmitter<DateRangeFilterValue>;

}

If it can be Dumb, 
make it Dumb



MessageFormComponent:
receives initial message data, 
current form loading/failure 
indicators and errors, and 
eventually emits a submit event

If it can be Dumb, 
make it Dumb

@Component(...)

class MessageFormComponent {

 @Input() initialMessage: MessageData;

 @Input() saveLoading: boolean = false;

 @Input() saveFailed: boolean = false;

 @Input() errors?: string[];

 @Output() submit: EventEmitter<MessageData>;

}



Note: See how explicitly we are injecting 
the most important business logic to it with 
Inputs and Outputs (saving the form and 
the result of it).

It is not the Dumb’s responsibility to save 
the form nor update its’ state. In this case, it 
does keep the local state of the message 
before submitting it, but sending the form 
and handling the save response will be done 
elsewhere.

MessageFormComponent:
receives initial message data, 
current form loading/failure 
indicators and errors, and 
eventually emits a submit event

If it can be Dumb, 
make it Dumb

@Component(...)

class MessageFormComponent {

 @Input() initialMessage: MessageData;

 @Input() saveLoading: boolean = false;

 @Input() saveFailed: boolean = false;

 @Input() errors?: string[];

 @Output() submit: EventEmitter<MessageData>;

}



That is: if they have the same 
external dependency/side effects, 
let’s move it to their Smart parent 
instead, and make the children 
Dumb instead.

1. For example, if a Search Page has 

multiple filters like:

- UserFilterComponent

- AdminFilterComponent

- DateRangeFilterComponent

Then instead of having a common 

external dependency on 

`SearchPageService.currentFilters` in 

all of them, let’s just create a 

“FiltersComponent”, that takes over 

this dependency and make all 

sub-filter components beneath it 

Dumb.

If multiple children 
are equally Smart, 
make them Dumb



What cannot be 
Dumb, 
make it Smart

For example: the top view components. 

Because even if we make everyone Dumb, 

there needs to be at least someone who is 

Smart. 

(The one, who actually saves the data to 

LocalStorage, obtains the data from APIs, 

listens to the navigation changes, etc.)



“Make the top view component Smart” is a 

very good rule, but in some of the views, it 

might not be enough.

For example, a Gmail main inbox page has 

following features:

- lists recent threads in the given folder (and 

lets you act on them)

- lists available folders (and lets you modify 

them)

- shows up online people from Hangout

- allows you to quickly write a new message

If the Smart one 
gets too big, 
divide it into 
separate Smarts



If we would have only one Smart component 

on the Gmail page, then it would need to 

take over all of its’ responsibilities. Quite a 

lot. How is that better than a spaghetti code?

Instead, we could split into a few Smart 

Components, that have their own 

responsibilities:

- ThreadsListView

- FoldersListView

- HangoutPeopleListView

- NewMessageModalView

If the Smart one 
gets too big, 
divide it into 
separate Smarts



(live demo here)

Real world 
example
Recruitee’s
search page

(live demo)

https://recruitee.com/admin/#/candidates
https://recruitee.com/admin/#/candidates


+ You can easily predict the Dumb 

Component’s behaviour.

+ You can easily test the Dumb Component’s 

behaviour.

+ You can (quite) easily change the Dumb 

Component’s behaviour without breaking 

things.

+ The main logic of your app is controlled only 

by your Smart Components.

+ It is more performant.

+ It helps you avoid bugs.

Pros & Cons of the Smart/Dumb split

- You cannot inject dependencies wherever 

you want.

- You cannot mutate data passed through 

Input/Output.



Just look at it.

Its’ behaviour is as simple as it public Inputs 

and Outputs interface.

(Which, by the way, together with 

TypeScript typedefs, serves as an awesome 

documentation.)

You can easily 
predict the Dumb 
Component’s 
behaviour



You can easily test 
the Dumb 
Component’s 
behaviour

Testing a Dumb Component is as simple as:

1. Define input values

2. Instantiate Component

3. Act on the Component (f.e. click it)

4. Assert that a specific `@Output()` had 

been emitted.

(Testing a Smart Component usually 

requires much more than that: stubbing 

external dependencies, checking for side 

effects, etc.)



Whenever you change a Dumb Component:

● Make sure the old interface is still 

working (or search & replace old 

usages of this Component, which you 

can easily do thanks to TypeScript)

● The main behaviour of Component 

still works as intended.

You don’t need to see if any external 

dependencies break this component, or if it 

produces some other side effects than 

before. It never did so and never will.

You can (quite) 
easily change the 
Dumb 
Component’s 
behaviour without 
breaking things



● You don’t need to read your whole 

code repository, just to see who’s 

fetching what where and what is 

changed what and where.

(Because what is going on deep down 

the tree, you can see just by looking at 

the HTML template.)

● If you need to alter the main logic of 

your app, often you don’t need to 

touch the Dumb Components at all 

(or, the only thing that you need to 

change in them, are their input 

values.)

The main logic of 
your app is 
controlled only by 
your Smart 
Components



It is more 
performant

Because now you know what exactly 

depends on what, you don’t need anymore 

the NgZone nor the magical Change 

Detection mechanism that rechecks for 

changes of everything in everywhere:

You can just skip NgZone and use 

ChangeDetectionStrategy.OnPush in all of 

your Dumb Components.



It helps you avoid 
bugs

● Less coupling of your code;

Splitting it into smaller, more 

SOLID-like and pure bits;

Avoiding side effects

- all of that decreases the complexity 

of your code and at the same time 

decreases the chance that bugs are 

going to happen in your code.

● Since most of your app depends on 

typed Inputs and Outputs interfaces 

now, it decreases the chance of bugs 

caused by typos and wrongly passed 

data types a lot.



… because there's no need to use it 

anymore!

We don't need to inform the Angular that 

something had been changed in the parent 

component, because as its’ child component, 

we are never directly changing it anymore.

(If we do so, we do it through `@Output()`, 

and it is the parent that handles the change 

itself.)

Bonus: Forget 
about 
`markForCheck()`



Related links

● “Mastering the Angular performance - by dropping the magic of Change Detector” - Jack 

Tomaszewski, medium.com

● “Code is not art, it’s engineering” - Jack Tomaszewski, medium.com

● “Question: How to choose between Redux's store and React's state?” and Dan Abramov’s response 

to it (creator of Redux)

● “Presentational and Container Components” - Dan Abramov, medium.com

https://medium.com/@jtomaszewski/mastering-the-angular-performance-by-dropping-the-magic-of-change-detector-2b605b444b04
https://medium.com/@jtomaszewski/mastering-the-angular-performance-by-dropping-the-magic-of-change-detector-2b605b444b04
https://medium.com/@jtomaszewski/coding-is-not-an-art-its-engineering-e95c2eead1ea
https://github.com/reduxjs/redux/issues/1287
https://medium.com/@dan_abramov/smart-and-dumb-components-7ca2f9a7c7d0


Thanks!
Any questions?

Jacek Tomaszewski
Fullstack Web Developer at Recruitee.com (We’re hiring!)

Freelancer and Consultant at jtom.me

https://jobs.recruitee.com
https://jtom.me

