
Hype Driven Development sucks?
or rather, how to do it well

by Jacek Tomaszewski
Full-stack Web Developer for over 15 years

jtom.me / jtompl / medium.com/@jtomaszewski

https://jtom.me
https://twitter.com/jtompl

Web Hypes History

Time2001

2005 Time

2013 Time

2016 Time

Time20132011 2014 2016 2017 2018 20192012

1. Server-side render
2. Client-side render/hydration/enhancement
3. Logic in components / Redux / Mobx
4. Two-way binding vs one way flow
5. Dependency Injection: import/export

singletons?
Component Context (React)?
Component DI context (Angular)?

6. Build setup: Webpack? Parcel? Rollup?
7. Framework: Angular? React? Vue? Ember?

Svelte? Web Components?
8. CSS-in-JS? Sass or CSS3? BEM?

...

Still unanswered

Thought-provoking question

If you’ve created a website yesterday…

… will you do it more quickly today?

… will you use the same set of tools?

Truth is
we’ve been following hypes all along

 (Which is good. If not, we’d still be doing)

HYPE

BAD
HYPE

GOOD
HYPE

UNSTABLE

AMAZING

COULD TRY DEPRECATED

DON’T TOUCH

Time

Hype

Time

unstable

worth considering

forget it

Take it! Still good,
but be cautious

Hype

Hype Driven Development sucks…?
Is hype X is bad or good?

Hype Driven Development sucks…?
Is hype X is bad or good?

Is it a good moment to join the hype X?

Should I join hype X?

Should I join hype X?

Should I join hype X?
I have problem A.

How can I solve it?

I have problem A.
How can I solve it?

I have problem A.
I can solve it with X,

but it has pros a,b,c and cons d,e,f .
Shall I do it?

Things to consider
when joining a hype

Community

- Popularity
- GH stars
- Google
- Npmtrends.com
- Local meetups

- Support
- GH open issues
- PRs merge frequency
- Commit history
- Release history

Documentation

- API docs
- API fully and correctly documented?

- Usage examples
- Up-to-date?

- Tests
- Unit tests? E2E/Visual tests? Performance tests?

- Environment support
- Legacy browsers?
- Node.js (SSR)?
- A11y?

Installation cost

- Setup time

- Edge cases, server-side, legacy browser support

Learning cost

- Your current / future team is familiar with it?

- Is easy to learn?
- Simple API or a new programming concept?
- “Don’t do it” scenarios?

Recruitment

- Attracts good devs?

- For how long?

Developers productivity

- Bugs probability

- Code simplicity

App performance

- Meaningful impact on the performance

Technology debt

- Complicates codebase?
- Impacts a lot of files?

- Requires adding eslint/styleguide rules?

Deprecation / Abandonment risk

- After it’s abandoned, will it impact the project?
- Stability over Time
- Recruitment
- Eventual Replacement Cost

- When will it get abandoned?
- Maintainers
- General Popularity
- Business Popularity
- Competition

Good Rules of
Safe Hype Driven Development

Avoid hypes that are about to die

- ES6 ES7

- lodash.map Array.prototype.map

- Flow TypeScript

Prefer native solutions if they do the job

- Why `axios`, `frisbee`, if `fetch` is fine enough?
- If you don’t have a specific reason for it, go with `fetch`!

Avoid hypes that you don’t need

- “GraphQL/styled-components/redux everywhere!”
- AKA “Loudest guy in the room / on Twitter”

Use Adapter interface

- If the tool gets deprecated, you will need to switch it
in only one place

PROJECT ADAPTER

OLD
TOOL

NEW
TOOL

Leave your personal taste aside

- Project’s Good > Your Personal Preference

- Avoid “choose random”, “do what you like”

Choose one thing over two

A > B

Always use A

Always use A

Choose one thing over two

A == B

Always use B

Choose one thing over two

A is usually better than B,
but in rare case C1, B is better

Always use A.
In cases like C1, always use B

Leave A where it is.
From now on, always use B

You’ve been using A,
But now B is better than A

Choose one thing over two

Still always use A.

Enforce the chosen way; Ban the other ones

- README.md, STYLEGUIDE.md

- ESLint rules

- Keep backwards compatibility if possible
- Unless you can reinvent everything in one commit,

while not breaking anything, and not blocking anybody
(P.S. This never happens in bigger projects)

Iterate, not reinvent

Always be objective

- Give specific reasons why A is better than B

- Use facts, not emotions

Always be objective

- Bad Senior forces a solution

- Good Senior explains why the solution is better

Help yourself and the others be objective

- Understand the other side

- When hearing emotions, opinions, ask for their root cause

- Ask others for help

- Teammates
- Other teams
- Community

Collaborate with others

- Raise a thought/question whenever you’re considering A/B

- Slack, GH Issue

- Communicate why you chose what you chose

Why so brutal?

Don’t be selfish

1. It’s about the long-term
2. It’s about the project
3. It’s about the team

Don’t avoid the hypes

but know why you’re taking them

Always be objective

1. Leave emotions aside
2. Speak facts

3. Help others be objective

Good Intuition
Decision-Making

Process
= Good Engineer

- “Coding isn’t art, it’s engineering” - Jacek Tomaszewski
- “Hype Driven Development” - Marek Kirejczyk

- Also related: review by David Cassel

- “Questions to ask when adding new tech to your
infrastructure” - Bensan Gorge

- Example of a hype that isn’t actually that often needed:
“Should you be using Web Workers? (hint: probably not) -
David Gilbertson

- Example of extracting out a framework to just a tool:
“Using Micro-Frontends to Permantenly Solve the Legacy
JavaScript Problem” - Beamery

Related links

https://medium.com/better-programming/coding-is-not-an-art-its-engineering-e95c2eead1ea
https://blog.daftcode.pl/hype-driven-development-3469fc2e9b22
https://thenewstack.io/programmers-react-warning-hype-driven-development/
https://medium.com/@bensan.george/questions-to-ask-when-adding-new-tech-to-your-infrastructure-4bea61ad13b2#.pfyht0ufe
https://medium.com/@bensan.george/questions-to-ask-when-adding-new-tech-to-your-infrastructure-4bea61ad13b2#.pfyht0ufe
https://medium.com/@david.gilbertson/should-you-should-be-using-web-workers-hint-probably-not-9b6d26dc8c6a
https://medium.com/@david.gilbertson/should-you-should-be-using-web-workers-hint-probably-not-9b6d26dc8c6a
https://medium.com/hacking-talent/using-micro-frontends-to-permanently-solve-the-legacy-javascript-problem-5fba18b0ceac
https://medium.com/hacking-talent/using-micro-frontends-to-permanently-solve-the-legacy-javascript-problem-5fba18b0ceac

Thanks! Questions?

Jacek Tomaszewski
Full-stack Web Developer for over 15 years

jtom.me / jtompl / jtomaszewski

https://jtom.me
https://twitter.com/jtompl
http://github.com/jtomaszewski

