
Jacek Tomaszewski
Fullstack Web Developer at Appunite.com

Freelancer and Consultant at jtom.me

Make your components pure and dumb
(and composable)

https://jobs.appunite.com
https://jtom.me

Writing new components is easy…

… but maintaining, modifying and extending them is not.

- leads to having hundreds of components
- decreases readability of the code
- is the opposite to DRY

Writing new components is bad

- risks breaking existing parts of the app
- leads to confusing and complicated code,

with lots of `if` and `else` statements
- demands predicting everything in advance

Modifying existing components is hard

How to make components reusable, simple and useful
in all the different contexts of the app?

Make them pure and dumb

(live demo here)

Real world
example
Search page

https://recruitee.com/admin/#/candidates

Plan

1. Divide components into Smart and Dumb
2. Keep components as Dumb as possible

3. Decide when a component should be Smart, not Dumb

Smart Component

Also known as:

● Impure Component
● Connected Component
● Container Component

Dumb Component

Also known as:

● Pure Component
● Presentational Component

1. Divide components into Dumb and Smart

Pure function = a function, that for
given arguments, always returns the
same value.

1. For given data (inputs), always
looks and behaves the same.

2. Emits events (outputs).

Dumb Component

outputinput

Impure function = a function, that by
touching "the outer world", modifies
it, and/or returns different result for
the same arguments.

1. Receives data from external
services.

2. Produces side effects.

Smart Component

outputinput

external
dependencies

side effects

Dumb Component has no external
dependencies and causes no side
effects.

Stateless Component has no local
state (but might still cause side
effects).

Smart Component has external
dependencies and/or causes side
effects.

Stateful Component has a local
state (but may not require any
external dependencies nor cause
any side effects).

Note: Dumb/Smart is not Stateless/Stateful!

Dumb/Smart x Stateful/Stateless matrix

2. Keep components as Dumb as possible

a. Don’t depend on external services

b. Don’t produce side effects 

c. Don’t mutate inputs

class DateTimePickerComponent {

 timeZone: string = 'Europe/Warsaw';

 constructor(

 private account: UserAccount

) {

 if (this.account.currentUser) {

 this.timeZone =

this.account.currentUser.timeZone;

 }

 }

}

Don’t depend on
external services

If you need data,
require it directly.

Don’t depend on
external services

If you need data,
require it directly.

class DateTimePickerComponent {

 @Input() timeZone: string =

'Europe/Warsaw';

}

class MessageItemComponent {

 @Input() message: MessageData;

 messageUnread: boolean = false;

 constructor(

 private messages: MessagesRepo,

) {}

 ngOnInit() {

 this.messages

 .isMessageUnread(this.message.id)

 .subscribe(unread => {

 this.messageUnread = unread;

 });

 }

}

Don’t depend on
external services

If you need data,
require it directly.

class MessageItemComponent {

 @Input() message: MessageData;

 @Input() messageUnread: boolean =

false;

}

Don’t depend on
external services

If you need data, require it
directly.

Instead, emit an event.

Don’t produce
side effects

class DateTimePickerComponent {

 timeZone: string = 'Europe/Warsaw';

 constructor(

 private accountRepo: AccountRepo,

) {}

 changeTimeZone(timeZone: string) {

 this.timeZone = timeZone;

 this.accountRepo.updateCurrentUser({

 timeZone

 });

 }

}

class DateTimePickerComponent {

 @Input() timeZone: string =

'Europe/Warsaw';

 @Output() timeZoneChange:

EventEmitter<string> = new

EventEmitter();

 changeTimeZone(timeZone: string) {

 this.timeZoneChange.emit(timeZone);

 }

}

Instead, emit an event.

Don’t produce
side effects

class MessageItemComponent {

 @Input() message: MessageData;

 messageUnread: boolean = false;

 constructor(

 private messages: MessagesRepo,

) {}

 markMessageAsRead(read: boolean) {

 this.messageUnread = !read;

 this.messagesRepo.markMessageAsRead({

 id: message.id,

 read: read

 });

 }

}

Instead, emit an event.

Don’t produce
side effects

class MessageItemComponent {

 @Input() message: MessageData;

 @Input() messageUnread: boolean =

false;

 @Output() messageMarkedAsRead:

EventEmitter<boolean> = new

EventEmitter();

 markMessageAsRead(read: boolean) {

 this.messageMarkedAsRead.emit(read);

 }

}

Instead, emit an event.

Don’t produce
side effects

Don’t mutate
inputs

class MessageItemComponent {

 @Input() message: MessageData;

 get messageUnread(): boolean {

 return this.message._isUnread;

 }

 markMessageAsRead(read: boolean) {

 this.message._isUnread = !read;

 this.messagesRepo.markMessageAsRead({

 id: message.id,

 read

 });

 }

}

Instead, emit the change as an
event, and let the parent pick it
up and act upon it.

(Mutating input = producing a
side effect that causes
mutation of parent’s data)

a. If it can be Dumb, make it Dumb.
b. If multiple children are equally Smart, make them Dumb.
c. What cannot be Dumb, make it Smart.
d. If the Smart one gets too big, divide it into separate Smarts.

3. Decide when a component should be Smart

class TextInputComponent {

 @Input() value: string;

 @Output() valueChange: EventEmitter<string>;

}

If it can be Dumb,
make it Dumb

If it can be Dumb,
make it Dumb

class MessageFormComponent {

 @Input() initialMessage: MessageData;

 @Input() saveLoading: boolean = false;

 @Input() saveFailed: boolean = false;

 @Input() errors?: string[];

 @Output() submit: EventEmitter<MessageData>;

}

(By moving their shared Smart
dependency to the parent.)

If multiple children
are equally Smart,
make them Dumb

Store

UserFilter DateRangeFilter StatusFilter

getSearchFilters() setSearchFilters()

SearchFilters

(bad: everything is Smart)

(By moving their shared Smart
dependency to the parent.)

If multiple children
are equally Smart,
make them Dumb

Store

UserFilter DateRangeFilter StatusFilter

getSearchFilters() setSearchFilters()

SearchFilters

(good: only the parent is Smart)

SearchPageWhat can’t be Dumb,
make it Smart

(When everyone is Dumb,
there needs to be
at least one Smart.)

Store

UserFilter

DateRangeFilter

StatusFilter

SearchFilters SearchContent

SearchList

SearchPagination

SearchListItem

If the Smart one
gets too big,
divide it into
separate Smarts

(No one wants
 a “know-it-all” Smarty Pants.)

MailboxPage

Store

ThreadsList

FoldersList OnlineFriendsList

NewMessageForm

CurrentUserMenu

If the Smart one
gets too big,
divide it into
separate Smarts

(No one wants
 a “know-it-all” Smarty Pants.)

Store

MailboxPage

ThreadsList

FoldersList OnlineFriendsList

NewMessageForm

CurrentUserMenu

(live demo here)

Real world
example
Search page

https://recruitee.com/admin/#/candidates

+ You can easily predict the Dumb

Component’s behaviour.

+ You can easily test the Dumb Component’s

behaviour.

+ You can (quite) easily change the Dumb

Component’s behaviour without breaking

things.

+ The main logic of your app is controlled only

by Smart Components.

+ It is more performant.

+ It helps you avoid bugs.

Pros & Cons of the Smart/Dumb split

- You cannot inject dependencies wherever

you want.

- You cannot mutate data passed through

props.

It’s that simple:

(+ with TypeScript typedefs, almost no

documentation will be needed.)

You can easily
predict the Dumb
Component’s
behaviour

outputinput

You can easily test
the Dumb
Component’s
behaviour

Testing a Dumb Component is as simple as:

1. Define input values

2. Instantiate Component

3. Act on the Component (f.e. click it)

4. Assert that a specific `@Output()` had

been emitted.

(Testing a Smart Component usually

requires much more than that: stubbing

external dependencies, checking for side

effects, etc.)

Whenever you change a Dumb Component,

just make sure that:

● The old interface is still working (or

search & replace all existing usages of

this Component)

● The main behaviour of Component

still works as intended.

You don’t need to see if any external

dependencies break this component, or if it

produces some other side effects than

before. It never did so and never will.

You can (quite)
easily change the
Dumb
Component’s
behaviour without
breaking things

● You don’t need to read your whole

code repository, just to see who’s

fetching what where and what is

changed what and where.

(Because what is going on deep down

the tree, you can see just by looking at

the HTML template.)

● If you need to alter the main logic of

your app, often you don’t need to

touch the Dumb Components at all

(or, the only thing that you need to

change in them, are their input

values.)

The main logic of
your app is
controlled only by
your Smart
Components

If your component is dependant only on its’

inputs, then you can easily avoid rerendering

it if the inputs didn’t change.

Less rerenders & view checks -> Win

It is more
performant

It helps you avoid
bugs

● Less coupling of your code;

Splitting it into smaller, more

SOLID-like and pure bits;

Avoiding side effects

- all of that decreases the complexity

of your code and at the same time

decreases the chance that bugs are

going to happen in your code.

● Since most of your app depends on

typed Inputs and Outputs interfaces

now, it decreases the chance of bugs

caused by typos and wrongly passed

data types a lot.

Related links

● “How to write good, composable and pure components in Angular 2+” - Jack Tomaszewski,

medium.com

● “Code is not art, it’s engineering” - Jack Tomaszewski, medium.com

● “Question: How to choose between Redux's store and React's state?” and Dan Abramov’s response

to it (creator of Redux)

● “Presentational and Container Components” - Dan Abramov, medium.com

https://medium.com/@jtomaszewski/how-to-write-good-composable-and-pure-components-in-angular-2-1756945c0f5b
https://medium.com/@jtomaszewski/how-to-write-good-composable-and-pure-components-in-angular-2-1756945c0f5b
https://medium.com/@jtomaszewski/coding-is-not-an-art-its-engineering-e95c2eead1ea
https://github.com/reduxjs/redux/issues/1287
https://medium.com/@dan_abramov/smart-and-dumb-components-7ca2f9a7c7d0

Jacek Tomaszewski
Fullstack Web Developer at Appunite.com

Freelancer and Consultant at jtom.me

Thanks! Questions?

https://jobs.appunite.com
https://jtom.me

