
Migration from ng1 to ng2
Jack Tomaszewski (jtom.me)

->

AngularJS Beers @ Barcelona,
17th November 2016

http://jtom.me/

Case study
Recruitee.com

Our case
● Quite big angular1 SPA for a SaaS platform

○ 130 components
○ 83 service objects

● We used to have all components written as controllers, but with arrival of
angular 1.5, we migrated all of it to `angular.component()` structure
(to make the transition to ng2 easier later on)

● ~30 different app views
● 130 components
● 83 service & factory objects

● // Note: We used to have all components written as controllers, but with arrival
of angular 1.5, we migrated all of it to `angular.component()` structure
(to make the transition to ng2 easier later on)

Angular1 SPA for a SaaS platform

Angular1 problems
1. Too low performance in some of the views - digest loop taking too long
2. Tried several fixes, like:

a. Angular bindonce syntax (`{{ ::isLoaded }}`)
b. Ng-repeat `track by`
c. Not rerendering an often changing view (ng-show instead of ng-if)
d. Not rendering an inactive view (ng-if instead of ng-show)

3. … but still, the loop just takes some time and you can’t really help it.
We need something better, more stable.

Solution
 Let’s switch to a new framework! ;>

“Switching to a new framework” - Schedule
1. Set up a new framework to live at the same time with the current app
2. Slowly rewrite existing views (and implement all the new views) in the new

framework
3. When all the views and old system’s parts get replaced with the new

framework,
a. Switch routing from ng1 to be handled by the new framework
b. Bootstrap the app with the new framework only
c. Remove the ng1 dependency completely

“Switching to a new framework” - but which one?
● React + Redux?

○ Great community support atm
○ The problem: how do you structure and maintain such a big SPA app in Redux?

Splitting everything into reducers, actions and stateless components looks nice on a todo app,
But in our case, propably looots of code would have to be written

● Angular 2?
○ There’s @angular/upgrade library helping us with the migration
○ We can, but we don’t have to, to use a single Redux/ngrx store for our app’s state

■ // Our custom solution: use service state objects, instantied by View Components,
containing both its state (as RxJS Observable) and actions that update it

Switching from angular1 to angular2
1. Structure the app, by splitting it into ng1/ and ng2/ directories
2. Switch the app build system to webpack with typescript support (optionally)
3. Bootstrap the app with @angular/upgrade, instead of `angular.bootstrap()`
4. Upgrade some of the ng1 services to ng2
5. Downgrade some of the ng2 services to ng1
6. Create a new component in ng2 and downgrade it to ng1
7. Upgrade a ng1 component to ng2 (optionally)

// Generally you shouldn’t do it, but a lazy programmer is a good programmer ;)
8. Synchronize your data (service objects) between ng1 and ng2 (optionally)

Split the app into ng1/ and ng2/
directories

Switch to webpack with typescript support
● Remove local/bower vendor dependencies; use npm’s packages instead
● Inject vendor dependencies using webpack’s `require()`, f.e.

`require('angular')`
○ Some hacks and polyfills required here and there, like `window.moment = require('moment')`

● Export app ENV variables to globally available `app.env.ts` file
● Example:

https://gist.github.com/jtomaszewski/40a6f3e1db85528efd05ad1c83a168d7

https://gist.github.com/jtomaszewski/40a6f3e1db85528efd05ad1c83a168d7

Bootstrap the app with @angular/upgrade
● https://gist.github.com/jtomaszewski/40a6f3e1db85528efd05ad1c83

a168d7

https://gist.github.com/jtomaszewski/40a6f3e1db85528efd05ad1c83a168d7
https://gist.github.com/jtomaszewski/40a6f3e1db85528efd05ad1c83a168d7

Upgrade ng1 services to ng2

Upgrade ng1 services to ng2

Downgrade ng2 services to ng1

Downgrade ng2 services to ng1

Create a ng2 component

Downgrade a ng2 component to ng1

Use the ng2 component in the ng1 app

Upgrade a ng1 component to ng2 (optionally)

● for ‘adapter-like’ components - to
migrate old ng1 directives to new
angular.component() syntax, and
then use them in the ng2 app

● When we’re too lazy to migrate
whole ng1 component to ng2,
and want to still use some parts
of the old code

Upgrade a ng1
component to ng2: why?

Data synchronization
between ng1 and ng2:

Manually,
by $rootScope
callbacks

Data synchronization
between ng1 and ng2:

Automatically (by
callbacks, through your
service objects)

Other notes from ng1 -> ng2 migration
● Webpack is slooow and not so easy to configure..

Take a day off for it; feel free to use our gist code sample:
https://gist.github.com/jtomaszewski/40a6f3e1db85528efd05ad1c83a168d7

● Use webpack hot reload
○ https://github.com/AngularClass/angular2-hmr didn’t work with @angular/upgrade ;(
○ https://github.com/jtomaszewski/hot-app - our alternative -

hot reload working with both ng2 AND ng1 app!
● RxJS is awesome
● TypeScript typings are cool

https://gist.github.com/jtomaszewski/40a6f3e1db85528efd05ad1c83a168d7
https://github.com/AngularClass/angular2-hmr
https://github.com/jtomaszewski/hot-app

Thanks.
Any questions?

Jack Tomaszewski
Fullstack Web Developer
Freelancer / Consultant for hire: jacek@jtom.me / www.jtom.me

mailto:jacek@jtom.me
http://www.jtom.me

